11 1. Novel Prenylated Xanthones from *Gavcinia gerravdii* HARVEY

by Isabelle Sordat-Diserens^a), Andrew Marston^a), Matthias Hamburger^a), Colin Rogers^b), and **Kurt Hostettmann**^a)*

^a) Institut de Pharmacognosie et Phytochimie, Ecole de Pharmacie de l'Université de Lausanne, 2, rue Vuillermet, CH-1005 Lausanne

 $^{\rm b}$) Department of Chemistry, University of Durban-Westville, Private Bag X54001, Durban 4000, Republic of South Africa

(I. VI. 89)

Three novel prenylated xanthones, 1-3, have been isolated from the root bark of *Garcinia gerrardii* HARVEY *ex* T. R. **SIM** (G. *natalensis* SCHLECHTEK; G. *transuaalensis* BUKTT DAVY; Guttiferae). Structure elucidation was achieved by **a** combination of one- and two-dimensional NMR spectroscopic techniques, including long-range HETCOR, mass spectroscopy, and chemical methods. Garcigerrin A **(1)** and B **(2)** are pyrano derivatives of **3.** They all show a rare 1,4,5 oxygenation pattern of the xanthone nucleus. Xanthone **3** is fungicidal against *Cladosporium cucumerinum.*

Introduction. ~ *Garcinia gerrardii* HARVEY (Guttiferae) is a large shrub or small tree 4 to *5* m in height, but sometimes reaching 10 to 13 m. It occurs in evergreen forest and on mountain outcrops and is endemic to South Africa and Swaziland [I] [2]. The fruit is edible. G. *gerrardii,* which is investigated phytochemically for the first time here, belongs to the largest genus of the tropical family Guttiferae (excluding the Hypericaceae). The genus contains *ca.* 400 species and is a significant source of xanthones [3-51. Dioxygenated, tetraoxygenated, and various prenylated xanthones have been isolated [4]. Benzophenones, biflavonoids, and condensed tannins are also a major feature of some of the species *[6].* In addition, gum and seed oil of some plants yield fatty acids and their esters.

The most studied species of the genus are C. *mangostana* and *G. kola.* Investigations on *G.mangostana* have resulted in the isolation of anthocyanin glycosides, a benzophenone, maclurin, and several xanthones **[7].** One of these, mangostin and four of its derivatives have antimicrobial activity [8]. The seeds of G. *kola* contain flavonoids, antihepatotoxic biflavonoids, xanthones [9], and kolanone, a polyisoprenylated benzophenone with antimicrobial properties [10].

During our study of different Guttiferae species, it was found that the root bark extracts of G. *gerrardii* exhibited fungicidal activity. Here we report the isolation of the major xanthonoid constituents.

Results. - The root bark of *G.gerrardii*, collected in South Africa, was extracted successively with CH₂Cl, and MeOH. In a TLC bioassay [11], the CH₂Cl, extract was fungicidal to *Cladosporium cucumerinum,* a plant pathogenic fungus. Flash chromatography of the orange-brown gummy CH_2Cl_2 extract on silica gel gave 6 fractions. Subsequent *Sephadex-LH-20* and low-pressure liquid chromatography on *RP-8* and $RP-18$ adsorbents yielded three yellow compounds, garcigerrin **A** (1), garcigerrin **B** (2), and 12b-hydroxy-des-D -garcigerrin A **(3).**

Garcigerrin A $(1, C_{23}H_{24}O_7)$ gave a molecular ion at m/z 412 by EI-MS. Upon acetylation, a tetraacetate **la** $(= 3,4,8,11$ -tetra-O-acetyl-1), was obtained, indicating the presence of 4 OH groups. Although no bathochromic shift was observed in the UV spectrum of **1** upon addition of AICl, [12], the presence of a broad **s** at 12.89 ppm in the 'H-NMR spectrum was indicative of a chelated OH.

	1^a	1 ^b	2°
$CH3-C(2)$	1.25(s)	1.41 (s)	1.48 (s)
$CH3-C(2)$	1.23(s)	1.38(s)	1.22(s)
$H - C(4)$	5.41 $(d, J = 5.1)$	5.45 $(d, J = 5.1)$	4.45 $(d, J = 7.9)$
$H - C(3)$	4.39 (d, $J = 5.1$)	4.57 (dd, $J = 5.1, 0.9$)	$3.50 (d, J = 7.9)$
$H - C(5)$	7.40 $(d, J = 8.1)$	7.34 $(d, J = 8.1)$	7.46 (d, $J = 8.4$)
$H-C(6)$	7.72 $(d, J = 8.1)$	7.84 (dd, $J = 8.1, 0.9$)	7.67 (d, $J = 8.4$)
$OH-C(8)$	12.89(s)		12.88(s)
$2 \text{CH}_3 - \text{C}(1')$	1.47(s)	1.53(s)	1.46(s)
$H-C(2')$	6.24 (dd, $J = 17.6, 10.3$)	6.27 (dd, $J = 18.0, 10.1$)	6.23 (dd, $J = 17.7, 10.4$)
CH ₂ (3')	4.99(m)	5.02 (dd, $J = 18.0, 1.3$)	4.99(m)
		5.04 (dd, $J = 10.1, 1.3$)	
$H - C(10)$	7.36(s)	7.31(s)	7.33(s)
a)	Measured at 400 MHz, in (D_6) DMSO.		
b).	Measured at 200 MHz, in $CDCl3/CD3OD 10:1$.		
$^{\rm c}$	Measured at 200 MHz, in (D_6) DMSO.		

Table 1. *'H-NMR Spectral Data for Compounds* **1** *und2*

The 'H-NMR spectrum of **1** *(Table I)* showed the signals for 4 CH, groups, an AB system of a 1,2,3,4-tetrasubstituted aromatic ring and a s at 7.36 ppm of an isolated aromatic proton. An ABX system at 6.24 and 4.99 ppm was indicative of a side chain with a terminal olefinic methylidene group, whereas the resonances at 4.39 and 5.41 ppm suggested the presence of two vicinal secondary OH groups. **A** spectrum measured in CDCl,/CD,OD 10:l and a delayed COSY experiment revealed some informative long-range couplings. An allylic coupling and a five-bond coupling were observed between $H-C(4)$ and $H-C(5)$ and $H-C(4)$ and $H-C(6)$, respectively. An additional correlation over five bonds between $H - C(10)$ and $H - C(2')$ located the side chain *ortho* to the proton of the pentasubstituted aromatic ring. NOE difference measurements were in support of the position of the side chain. Upon irradiation of the CH₃-C(1') signal, enhancement of the signals at 7.36 (H-C(10)) and 12.89 ppm (chelated OH) was observed. The I,l-dimethylallyl side chain had, therefore, also to be *ortho* to the chelated OH group.

The I3C-NMR spectrum of **1** *(Table* 2) was indicative of the presence of a carbonyl and two heterocyclic 0-atoms. The 1,l-dimethylallyl side chain was identified by comparison with published data [13]. A quaternary C-atom at 69.6 ppm in conjunction with two vicinal secondary OH groups and two $CH₃$ groups suggested a **3,4-dihydroxy-2,2-dimethylchroman** moiety. At that stage, it became obvious that compound **1** had to be a xanthone, despite its atypical UV spectrum. While the nature of the substituents of the xanthone was elucidated, their positions of attachment remained to be shown by 2D heteronuclear shift correlation. Protonated C-atoms were assigned by one-bond correlation, and long-range connectivities were established with the aid of a HETCOR

Figure. Aromatic region of long-range HETCOR spectrum of garcigerrin A (1). Delays optimized for $J(C, H) = 7$ **Hz.** Cross peaks originating from residual direct couplings have not been traced out. * Cross peak resulting from foldover of OH-C(8).

C-Atom	$1b$) ^c)	2 ^d	C-Atom	$3d$)
C(2)	69.6	80.3	C(1)	151.0
$CH_3-C(2)$	25.6	26.3	C(2)	127.5
$CH_3-C(2)$	25.4	19.6	CH(3)	121.9
CH(3)	98.2	73.7	C(4)	136.2
CH(4)	71.8	67.7	C(4a)	141.2
C(4a)	137.7	132.1	C(10a)	144.7
CH(5)	120.7	122.4	C(5)	146.5
CH(6)	116.9	114.9	CH(6)	120.7
C(6a)	120.5	119.5	CH(7)	124.2
C(7)	182.4	182.5	CH(8)	114.6
C(7a)	108.5	108.6	C(8a)	120.5
C(8)	151.2	150.9	C(9)	182.8
C(9)	127.4	127.2	C(9a)	108.1
CH(10)	122.7	123.4	C(1')	40.0
C(11)	136.2	136.4	$2 CH3-C(1')$	26.4
C(11a)	141.8	142.1	CH(2')	146.6
C(12a)	141.1	140.5	CH ₂ (3')	110.7
C(12b)	147.4	145.1		
C(1')	39.8	39.0		
$CH_3-C(1')$	26.3	26.3		
CH(2')	146.6	146.7		
CH ₂ (3')	110.6	110.7		

Table 2. '3C-NMR Spectral *Dutu for* Compounds **1-3")**

 $\binom{a}{b}$ Chemical shifts in ppm; solvent: (D_6) DMSO.

Measured at 100.5 MHz.

') In addition to the C,H connectivities given in the text and the Figure, the following long-range couplings were observed by HETCOR: $CH_3-C(2)/C(2)$, $H-C(3)/C(2)$, $H-C(4)/C(3)$, $H-C(5)/C(6a)$, $H-C(5)/C(12b)$, OH-C(8)/C(9), CH₃-C(1')/C(9), and H-C(2')/2 CH₃-C(1').

 d) Measured at 50.7 MHz.</sup>

experiment [14] (delays optimized for $J = 7$ Hz; *Figure* and *Table 2*). The cross peaks observed for $H - C(6)$ with $C(4a)$, $C(7)$, and $C(12a)$, in conjunction with the homonuclear long-range couplings of H-C(4) established the position of the chromane ring as depicted. Its substitution pattern could be confirmed by additional long-range couplings. Noteworthy is the three-bond correlation of the chelated OH-C(8) with C(7a). Long-range connectivities between $H-C(10)$ and $C(8)$, $C(11)$, and $C(11a)$ proved the position of the 1,1-dimethylallyl moiety at $C(9)$.

The above data establish structure **1** for garcigerrin **A,** the *cis* configuration of the 3,4-dihydroxy moiety being based on the coupling constant $J(3,4)$ (5.1 Hz) in the ¹H-NMR spectrum, comparison with the isomeric xanthone $2 (J(3,4) = 7.9 \text{ Hz})$, and comparison with data reported for 3,4-cis- and **3,4-trans-dihydroxy-2,2-dimethylchromans** [1.51 [16]. In the case of chromans from *Helianthella quinquenervis,* the configuration at C(3) and C(4) of *cis* **-2,2-dimethyl-3,4,7-trihydroxy-6-acetylchroman** was confirmed by partial synthesis from the corresponding chromene *via* oxidation with $OsO₄$; the coupling constant $J(3,4)$ was 4 Hz [15]. Similarly, for establishing the configurations of 1,2-dihydroxyacronycine derivatives from *Sarcomelicope glauca* leaves, the *cis*-1,2-dihydroxy-1,2-dihydro isomer $(J(1,2) = 4.5 \text{ Hz})$ was prepared from acronycine by OsO₄ oxidation, while the *trans* isomer $(J(1,2) = 8.0 \text{ Hz})$ was obtained by Cr_2O_3 oxidation [17].

Garcigerrin B (2) $(C_{23}H_{24}O_{2})$ showed UV, IR, and EI-MS data similar to those of garcigerrin **A (1).** Noticeable differences in the 'H- and I3C-NMR spectra *(Tables I* and *2)* were observed only for the signals attributable to the chroman ring. **A** coupling constant of 7.9 Hz for $H-C(3)$ and $H-C(4)$ indicated that 2 was the *trans* isomer of 1 [15] [16].

Compound 3 ($C_{17}H_{16}O_5$) gave a molecular ion at m/z 312 by EI-MS. Its UV spectrum closely resembled those of **1** and **2,** suggesting a xanthone with a similar substitution pattern. Its structure was deduced from NMR data and NOE's of its dimethyl ether **3a** (= 4,5-di-O-methyl-3; *Table 3).*

The 'H-NMR spectrum of **3** displayed signals of an *ABM* system attributable to a 1,2,3-trisubstituted benzene ring and a s of an isolated aromatic proton. An olefinic ABX system and two allylic CH₃ groups were typical of a 1,l-dimethylallyl moiety, whereas a **s** at 12.77 ppm indicated the presencc of a chelated OH. In the I3C-NMR spectrum of **3,** the signals attributable to the pentasubstituted benzene ring were almost identical with the corresponding signals of xanthone **1.** The substituents were, therefore, tentatively placed as depicted. The proposed substitution pattern was corroborated by NOE difference measurements on the dimethyl ether **3a.** Irradiation of the CH30 signal at 4.01 ppm resulted in an enhancement of the **s** attributable to H-C(3). Upon presaturation of the CH₃-C(1') signal, NOE's to H-C(3) and OH-C(1) were observed. In addition, an enhancement of H-C(6) was obtained upon irradiation of the CH₃O signal at 4.04 ppm. The observed NOE's were of the order 5-10%. Thus, the substitution pattern of xanthone **3** was confirmed.

Discussion. – Three xanthones have been isolated from the root bark of *Garcinia* gerrardii. They are new natural products and have the rare 1,4,5-oxygenation pattern. Furthermore, the UV spectra of garcigerrin A **(1)** and B **(2)** give a fourth maximum at ca. 410 nm, a value higher than that normally recorded for xanthones [18]. Both **I** and **2** contain a dimethylpyran ring with a 3,4-dihydroxy substitution pattern. The presence of this moiety has been reported in two furoquinoline alkaloids from *Sarcomelicope glauca* leaves (Rutaceae) [17], in chromans from *Helianthella quinquenervis* (Asteraceae) [15], and in chromans from the basidiomycete *Panus rudis* [16]. Pyranoxanthones are very rare [4] **[19],** and this is probably the first time a dihydropyranoxanthone has been found. Both the *cis-* and trans-diols exist together in the plant.

Since they were optically inactive, both **1** and **2** were obtained as racemic mixtures. The same results ($[\alpha]_{\text{D}}^{20} = 0$) were obtained for the *cis*- and *trans*-chromans from *Helian*thella quinquenervis **[I51** and for the cis-chroman from the fungus Panus rudis [16]. Although the corresponding chromene derivative of **1** and **2** was not found in the G. gerrardii extract, it is reasonable to expect that biosynthesis of the garcigerrins involves the chromene as a precursor.

Biogenetically, xanthones **1** and **2** are isoprenylated derivatives of **3,** in which cyclisation of the isoprenylated substituent has occurred.

Compounds **1-3** were tested for their activity against the plant pathogenic fungus Cladosporium cucumerinum using a TLC biossay [l I]. Garcigerrin A **(1)** and B **(2)** were inactive at 50 μ g, whereas xanthone 3 prevented growth of the fungus at 0.2 μ g. Another xanthone, mangostin, is also reported to be fungicidal to five fungi, including Alternaria solani and Cunninghamella echinulata [8]. In addition, **3** exhibited moderate in vitro growth-inhibitory activity against the Co-115 human colon carcinoma cell line $(ED_{50} = 3 \text{ µg/ml})$ [20].

Financial support was provided by the *Swiss National Science Foundation* and the *Swiss Cancer League.* The authors are grateful to Dr. *W. Ammunn,* at that time at *Varian AG,* Zug, for measuring the HETCOR spectra.

Experimental Part

Generul. TLC: silica-gel precoated **A1** sheets *(Merck).* CHCI,/MeOH 20: 1 (system *I)* or petroleum ether/ AcOEt **1: 1** (system *2); RP-8* and *RP-18* precoated glass plates (HPTLC, *Merck),* MeOH/H,O mixtures; detection 254 and 366 nm. Low-pressure liquid chromatography (LPLC): *Lobar RP-8* and *RP-18* columns (40-63 pm; i.d. *2.5* x 27 cm; *Merck,* Darmstadt), equipped with *Duramat-80* pump *(Chemie und Filter,* Regensdorf). Purity of compounds was checked on an HPLC system consisting of a *Spectra-Physics* (San Jose, CA, **USA)** *8700* pump, *Rheodyne* injcctor, photodiode-array detector *HP 1040 A (Hewlett Packard),* an *HP-85* computer, and an *HP 7470* plotter; a *NovaPak* C *18* column (4 pm; i.d. 3.9 mm *x* 15 cm) was used. M.p.: *Mettler FP 80/82* hot stage apparatus; uncorrected. *[a],: Perkin-Elmer-241* polarimeter. UV spectra: *Perkin Elmer Lambda 3* spectrophotometer; λ_{max} (log ε) in nm; MeOH solns. and after addition of shift reagents according to [12]. IR spectra: *Perkin-Elmer 781* IR spectrometer. ¹H- and ¹³C-NMR spectra: *Varian VXR 200* and 400 instruments; multiplicities of I3C signals by DEPT experiments. 2D NMR experiments: quadrature detection in *Fl* and *F2.* COSY spectra: 256 \times 1 K data sets; after zero filling to 1 K \times 1 K complex data points, pseudo-echo weighting in both dimensions was used and the data displayed in the absolute value mode; an additional delay of 100 ms was employed for

measuring the delayed COSY. 2D HETCOR spectrum: at 35 \degree as a 128 \times 8 K data set; the spectral widths were 3192 Hz in *F1* and 17160 Hz in *F2*; after zero-filling to 512×8 K, sine-bell weighting was applied in both dimensions prior to *Fourier* transformation; the long-range HETCOR experiment was performed with delays optimized for $J(C, H) = 7$ Hz. NOE difference spectra: at 20 $^{\circ}$ with a presaturation delay of 5 s and varying power levels in order to ascertain selectivity of irradiation; typically 300-500 transients were recorded; a 1-2 Hz line broadening function was applied to the difference FID prior to *Fourier* transformation. EI-MS: *Nermug* R *3010* quadrupole instrument.

Plant Material. Root bark of *Garcinia gerrurdii* was collected in Kaarkloof Nature Reserve Durban, South Africa, in February 1988. A voucher specimen is deposited at the Roddy Ward Herbarium, University of Durban-Westville.

Extraction and Isolation. The powdered root bark of *G.gerrardii* (340 g) was extracted at r.t. with CH₂Cl₂. A portion $(2 \times 10 \text{ g})$ of the extract (28 g) was fractionated by flash chromatography on a silica-gel column (63–200 μ m; i.d. 7×90 cm) using a step-gradient CHCl₃/MeOH 50:1 \rightarrow 10:1. *Fr. I-VI* were collected. Repetitive LPLC of *Fr. V*(1600 mg) in 4 batches of 400 mg each on *RP-8* with MeOH/H₂O 75:25 yielded a fraction (360 mg) containing **1** and **2.** Pure **1** (92 mg) and **2** (24 mg) were obtained by separation of the mixture on a *Sephadex-LH-20* column (i.d. 4.5×70 cm) using MeOH. The fungicidal *Fr. III* (3600 mg) was chromatographed on *Sephadex LH-20* (MeOH), followed by LPLC on RP-18 (MeOH/H₂O 95:5 \rightarrow 100:0): antifungal 3 (102 mg).

Garcigerrin A (= $(3$ **RS**,4 **RS**)-9-(1',1'-Dimethylprop-2'-enyl)-3,4-dihydro-3,4,8,11-tetrahydroxy-2,2-dimethyl*pyrano[3,2-c]xanthen-7(2H)-one; 1).* Yellow needles from CH₂Cl₂. M.p. 228-229°. TLC (SiO₂, system 1): R_1 0.10. HPTLC (RP-8, MeOH/H₂O 85:15): R_f 0.55. $[\alpha]_D = 0$ (c = 0.15, MeOH). UV (MeOH): 253 (4.46), 271 (4.33, sh), 322 (3.99), 410 (3.50). UV (MeOH + NaOAc): no shift. UV (MeOH + NaOMe): 254, 282 (sh), 337, 455. UV (MeOH + AICI,): no shift. 1R (KBr): 3400 (OH), 2960 (CH), 1580 (C=O). 'H-NMR: *Table 1.* I3C-NMR: *Table 2.* EI-MS: 412 (74), 397 (86), 371 (32), 369 (12), 357 (20), **338** *(S),* 336 (20), 321 (41), 295 (26), 281 (26), 59 *(39,* 43 (100).

Garcigerrin A Tetraacetate (1a). Xanthone 1 (5 mg) was refluxed with Ac₂O/pyridine 1:1 (1 ml) for 12 h. The mixture was poured into ice/H₂O: white amorphous precipitate. Chromatography on a silica gel column $(15-40)$ pm) with AcOEt/petroleum ether 1:3 gave 1a as a white amorphous solid. M.p. 69–71°. TLC (SiO₂, system 1): R_r 0.73. UV (MeOH): 252 (4.51), 304 (3.82), *352* (3.54). UV (MeOH + NaOAc): no shift. UV (MeOH + NaOMe): 253 (4.46), 271 (4.33). 'H-NMR (CDCI,): 7.75 *(d, J* = 7.4, H-C(6)); 7.56 *(s,* H-C(10)); 7.30 *(d, J* = 7.4, H-C(5)); $6.55(H-C(3))$; $6.00(dd, J=18.0, 11.5, H-C(2'))$; $5.1(d, J= 18.0, 1H, CH₂(3'))$; $5.03(d, J=11.5, 1H, CH₂(3'))$; 5.00 **(s,** H-C(3)): 2.44 **(s,** 1 AcO); 2.38 **(s,** 1 AcO); 2.10 (.Y, 1 AcO); 1.91 **(s,** 1 AcO); 1.64 **(s,** 1 CH3-C); 1.58 (s, 1 CH,-C); 1.50 **(s, 1** CH3-C); 1.44 (9, 1 CH,-C). EI-MS: 580 (1, *M'),* 538 (9, *M+* - CH,CO), 496 **(35),** 436 (17).

Garcigerrin B (= *(3* RS,4 *SR/-9-(l',I'-Dimethylprop-2'-enyI)-3,4-dihydro-3,4,8.1I-tetrahydroxy-2,2-dimefhylpyrano[3,2-c]xanthen-7(2H)-one; 2).* Yellow amorphous solid. M.p. 130–133°. TLC (SiO₂, system *I):* R_f 0.12. HPTLC (RP-8, MeOH/H₂O 85:15): R_f 0.44 [a]_D = 0 (c = 0.15, MeOH). UV (MeOH): 253 (4.48), 271 (4.43, sh), 320 (3.99), 410 (3.61). UV (MeOH + NaOAc): no shift. UV (MeOH + NaOMe): 254, 280 (sh), 335, 455. UV (MeOH + AICI,): no shift. IR (KBr): 3380 (OH), 2960 (CH), 1590(C=O). 'H-NMR: *Table I.* I3C-NMR: *Table2.* EI-MS: 412 (loo), 397 (69), 371 (24), 325 (SI), 307 (15), 297 (20), 285 (37).

2-(l',l'-Dimethylprop-2'-enyl)-1,4,5-trihydroxy-9H-xanthen-9-one (3). Yellow amorphous solid. M.p. 203-205'. TLC (SO2, system *1):* R, 0.27. HPTLC (RP-8, MeOH/H,O 85:lS): R, 0.30. UV (MeOH): 250 (4.55). 265 (4.57), 320 (4.06), 408 (3.74). UV (MeOH + NaOAc): 265, 322, *355,* 424. UV (MeOH + NaOMe): 268, **330,** 420. UV (MeOH + AlCI,): no shift. IR (KBr): **3300** (OH), 2960 (CH), 1580 (C=O). 'H-NMR: *Table 3.* I3C-NMR: *Table 2.* EI-MS: 312 (40), 297 (loo), 279 (34), 271 (26), 257 (34).

2- *(I',l'-Dimefhylprop-2'-enyl) -4,5-dimefhoxy-I-hydroxy-9H-xanthen-Y-one* **(3a).** Methylation was carried out by stirring $3(5 \text{ mg})$ with ethereal CH₂N₂ (2 ml) in MeOH (2 ml) for 48 h at r.t. Purification on a silica gel column using hexane/EtOAc 9:1 and crystallization from MeOH gave **3a** as yellow needles. M.p. 118-119'. TLC (SiO,, system *1*): R_1 0.72. UV (MeOH): 239 (4.44), 248 (4.43), 260 (4.38), 315 (3.85), 392 (3.57). UV (MeOH + NaOAc): no shift. UV (MeOH + NaOMe): no shift. UV (MeOH + AICI,): no shift. IR (KBr): 3450 (OH), 2940 (CH), 1575 (C=O). 'H-NMR: *Table 3.* EI-MS: 340 (loo), 325 (loo), 307 (24), 294 (76), 179 (31).

REFERENCES

- [I] K. Coates Palgravc, 'Trees **of** Southern Africa', C. Struik Publishcrs, Cape Town, 1984, p.613.
- [2] J. M. Watt, M. G. Breyer-Brandwijk, 'The Medicinal and Poisonous Plants of Southern and Eastern Africa', E. and **S.** Livingstonc Ltd., Edinburgh-London, 1962, p.495.
- [3] M. U. **S.** Sultanbawa, *Tetrahedron* **1980,36,** 1465.
- [4] *G. J. Bennett, H.-H. Lee, Phytochemistry* **1989,** 28, 967.
- [5] P. Kumar, R. K. Baslas, *Herba Hung.* **1980,** *19,* 31.
- [6] P. G. Waterman, R. A. Hussain, *Biochem. Syst. Ecol.* **1983,** *11,* 21.
- [7] W. Mahabusarakam, P. Wiriyachitra, W.C. Taylor, *J. Nut. Prod.* **1987,50,** 474.
- [8] **B.** M. Sundaram, C. Gopalakrishnan, **S.** Subramanian, D. Shankaranarayanan, **L.** Kameswaran, *Plantu Med.* **1983,48,** 59.
- [9] A. Sofowora, 'The State of Medicinal Plants Research in Nigeria', Workshop Proceedings, Faculty of Pharmacy, University of Ife, Ile-Ife, Nigeria, 1986, p. 39, p. 56, p. 364.
- [lo] R. A. Hussain, **A.** G. Owegby, P. Parimoo, P. G. Waterman, *Plantu Med.* **1982,44,** 78.
- [I I] **A.** L. Homans, **A.** Fuchs, *J. Chromatogr.* **1970,51,** 327.
- [I21 K. R. Markham, 'Techniques of Flavonoid Identification', Academic Press, New York, 1982.
- [13] T. Fujimoto, **Y.** Hano,.T. Nomura, *Plunta Med.* **1984,50,218.**
- [14] *G.* E. Martin, **A.S.** Zektzer, *Mugn. Reson. Chern.* **1988,26,** 631.
- [15] W. Herz, P.P. Kulanthaivel, *Phytochernistry* **1984,23,** 435.
- [I61 **Z.** Kis, A. Closse, H.P. Sigg, L. Hruban, G. Snatzke, *Helu. Chim. Actu* **1970,53,** 1577.
- [17] **S.** Mitaku, A. L. Skaltsounis, F. Tillequin, M. Koch, J. Pusset, G. Chauvihre, *J. Nut. Prod.* **1986,** *49,* 1091.
- [18] K.R. Markham, *Tetrahedron* **1964,20,** 991.
- [I91 K. Balasubramanian, K. Rajagopalan, *Phytochemistry* **1988,27,** 1552.
- [20] A. Marston, J.-C. Chapuis, B. Sordat, J.D. Msonthi, K. Hostettmann, *PIuntu Med.* **1986,52,** 207.